Clock Tuner for Ryzen™ 2.0 – INTRO

- I want to remind you that early access is a premium opportunity to try the product much earlier than others without limitation. It also means that the product may contain bugs.
- CTR has two levels of protection, which will not allow the processor to perform dangerous actions.
- RC2 is not the final version, which will be available at the time of release. Patches and significant refinements are planned.
- Windows Defender sometimes sees a trojan program, this is a false positive.
- FACEIT Client Anti-cheat can block inpoutx64.dll library. This library is used for monitoring. You will have to add it to an exception.
- Also remember to read the manual to the end.

Clock Tuner for Ryzen™ 2.0 – INTRO

System requirements:

- .NET Framework 4.7.2
- BIOS for Zen 3 with AGESA 1.1.0.0 path B or newer
- BIOS for Zen 2 with AGESA (any)
- BIOS for APU with AGESA 1.1.8.0 or newer
- Windows 10 x64 (with all updates)
- BIOS settings <u>without</u> manual CPU OC, <u>without</u> PBO (Fmax too) and <u>without</u> Performance Enhancer (or other similar technologies)
- <u>Stable DRAM overclocking</u>

Supported CPU:

- Zen 3: Ryzen 9 5950X, Ryzen 9 5900X, Ryzen 7 5800X, Ryzen 5 5600X
- Zen 2: Threadripper 3970X, Threadripper 3960X, Ryzen 9 3950X, Ryzen 9 3900X, Ryzen 9 3900XT, Ryzen 9 3900, Ryzen 7 3800XT, Ryzen 7 3800X, Ryzen 7 3700X, Ryzen 5 3600XT, Ryzen 5 3600X, Ryzen 5 3600, Ryzen 5 3500X, Ryzen 5 3500, Ryzen 3 3300X, Ryzen 3 3100
- APU: Ryzen 7 PRO 4750G , Ryzen 7 PRO 4650G, Ryzen 3 PRO 4350G

Clock Tuner for Ryzen[™] 2.0 – FIRST STEPS

- Download Cinebench R20 and put the archive contents into the "CB20" folder. "CB20" is in the "CTR Early Access" folder.
- Go to the "CB20" folder and run Cinebench.exe. Accept the license agreement and close Cinebench R20.
- 3. You can now launch the application.

Clock Tuner for Ryzen™ 2.0 – DIAGNOSTIC

1. Run **CTR 2.0.exe** and go to "**TUNER**" tab.

2. Press "**DIAGNOSTIC**" button. The diagnosis will begin. Be patient, CTR will automatically test the different parameters, this may take some time. And the better your processor is, the longer it will take. If a BSOD occurs or if the computer reboots, CTR will automatically restore itself. Timeout is 90 seconds after Windows starts.

	CTR 2.0 beta 1 ptimization for ZEN2+ CPUs	CCX1 42.3° C01 4050 145	CCX2 42.1°	CO7 4050 123	° CCX4 42.3° C10 4050 120	CCX5 46.7°	C16	CCX6 46.8° 4050 171	019 C19	CCX7	43.4° 167	C22	CCX8	43.6°
		C02 4050 142	C05 4050 131	C08 4050 120	C11 4050 120	C14 4050 120	C17	4050 174	C20	4050	163	C23	4050	152
^		C03 4050 138	C06 4050 127	C09 4050 120	C12 4050 120	C15 4050 120	C18	4050 174	C21	4050	160	C24	4050	149
甸	HOMEPAGE	· · ·												
(1)	TUNER	CPU usage (%) 100	CPU TEL (V) 1.138	CPU VID (V) 1.163	CPU TEL (A) 89,4	CPU TDC (A) 91.3	CPU TEI	L (W) 101.7	CPU PP	PT (W) 1	179.9	CPU EC	DC (A)	238.7
ⅲ	BENCHMARK	Settings mode Ad	vanced 🗸			RESET SETTING	s	Log & Syste	m Inforr	nation				
©	ABOUT & HELP	Testing mode AVX Ligh	Testing mode AVX Light V Reference voltage (mV) 1225 Max PPT (W) 340 CPU usage trigger (%) 70 AMD Ryzen Threadripper 3960X 24-Core Processor ASUS ROG ZENITH II EXTREME											
<u>6</u>	SCREENSHOT	Cycle time (s) 360	Reference freq	uency (MHz) 4075 M	Max EDC (A) 360	CCX usage max (%) —		Coefficient						^
()		CCX delta (MHz) 75	Max frequency	(MHz) 4675 M	Max TDC (A) 250	CCX usage min (%) —		CCX# 2 1 CCX# 3 0						
Ŕ	DONATE	Polling period (ms) 500	Diagnostic volt	age (mV) 1181 M	Max temperature (°C) 88	Holding time (ms) —		CCX#4 0 CCX#5 6 CCX#6 5						
	MINIMIZE	IFSO 1.0 / IFSO 2.0	Enhance	e accuracy	CB20 testing	CTR HYBRID OC		CCX# 7 3 CCX# 8 2 AVX light mode						
\approx	EXIT	Autoload profile with OS	To tray		Autoshare stats			Cycle time: 600 Reference freq Reference volta	00 ms uency: 40! age: 1181	50MHz mV				
		DIAGNOSTIC	TUNE	STOP	CHECK STABILITY	PROFILE MANAGEMENT	ပ	Voltage step: 6 Manual overclo 18:43:32: CCX1 18:43:32: CCX2	mV ocking mo (138): 405((127): 405(de enableo 0 MHz, 118 0 MHz, 118	d 31 mV 31 mV			
Copyrig	nht 1 usmus© 2019-2021							18:43:32: CCX3 18:43:32: CCX4	(120): 405((120): 405(0 MHz, 118 0 MHz, 118	1 mV 1 mV			~

Clock Tuner for Ryzen[™] 2.0 – DIAGNOSTIC

3. Make a screenshot or write down the results of the diagnostics. You will need them to create profiles (**P1** and **P2**).

	CTR 2.0 beta 1 ptimization for ZEN2+ CPUs		CCX1	31°		CCX2	31°		ссхз	32.3°		CCX4	32.7°		CCX5	36.9°		CCX6	37.3°		CCX7	32.6°		CCX8	32.3°
		C01	557	145	C04	110	134	C07	683	123	C10	1256	120	C13	895	120	C19	572	1/1	C19	521	167	C22	592	156
		C02	534	142	C05	503	131	C08	1156	120	C11	1035	120	C14	966	120	C17	1665	174	C20	97	163	C23	101	152
窳	HOMEPAGE	C03 -	-	138 -	C06 -	482 -	127 -	C09 -	- 1023	120 	C12 -	947	120 -	C15 -	876 -] 120] -	C18 -	- 694	174	C21 -	- 602	160 	C24 -	- -	149 -
(7)	TUNER	CPU u	sage (%)	2.3	CPU TI	EL (V)	1.36	CPU VI	id (V)	1.363	CPU TI	EL (A)	19.9	СРИ Т	DC (A)	17.2	СРИ Т	EL (W)	27.9	CPU P	PT (W)	84.4	CPU E	DC (A)	260.6
⊞	BENCHMARK	Setti	ngs moo	de Adv	anced 🔨	/									RES	ET SETTING	ss	Log 8	k Syster	m Infor	mation				1
©	ABOUT & HELP	Testing	mode	AVX Light	• ~	Refere	nce volta	ge (mV)	1225	Ma 	ax PPT (W)		340	CPU	usage tri <u>c</u>	Jger (%) -	70	amd f Asus f	Ryzen Thro ROG ZENI	eadrippe ITH II EXT	r 3960X 24 IREME	4-Core Pro	ocessor		
6	SCREENSHOT	Cycle ti	ime (s)	360	~	Refere	nce frequ	iency (MH	iz) 4200) Ма —	ax EDC (A)		360	- ccx	usage ma	x (%) -	70	18:54:4 18:54:4 18:55:1	40: Step# 40: Stress 16: Stress	10. Diag test 1 sta test stop	nostic VID arted oped.	: 1127 mV	,		^
Ś	DONATE	CCX de Polling	elta (MHz) period (m	75 IS) 500	~ ~	Max fr Diagno	requency (ostic volta	(MHz) ige (mV)	4675	— Ма — Ма — Ма	ax TDC (A) ax temper	ature (°C)	250 	- Hold	usage mir ing time (n (%) - ms)	30 4000	18:55: Threa 18:55: 18:55:	17: Stress d# 49 fall 30: Stress 31: Step#	test 2 sta down, us test stop 11. Diagi	arted age 93.9% oped. nostic VID	6 : 1133 mV			
	MINIMIZE	IFSO 1.	0 / IFSO 2.	0			Enhance	accuracy			CB20 test	ting		CTR	HYBRID O	ic (Diagn Max te Energ AMD F	ostic resu emperatur y efficient Ryzen Th	ılts re: 47.5° : 3.57 readripp	er 3960X 2	24-Core Pr	ocessor		
\otimes	EXIT	Autolo	ad profile	with OS	C		To tray				Autoshar	e stats						Your C Recor Refere	PU is SIL nended v ence frequ	VER SA values for uency: 42	MPLE r Overcloc 200 MHz	king (P1 p	orofile):		
		DIA	GNOS.	ΠС		TUNE		S	тор		CI STA	HECK BILITY		PR MANA	OFILE GEMEN	т	U	Refere Recor Refere Refere	ence volta mended v ence frequence volta mended v	age: 1225 values for uency: 43 age: 1325 values for	o mV r Overcloc 325 MHz 5 mV r Undervo	king (P2 p	orofile):		
Copyrig	yht 1 usmus© 2019-2021																	Refere	ence freq ence volta	uency: 40 age: 1150)50 MHz) mV				~

1. After completing the diagnostics, CTR itself will offer you the recommended settings, some fields will be changed automatically. Press the "**TUNE**" button and wait until the work is finished. If a BSOD occurs or the computer reboots, CTR will automatically recover and continue to perform the required operations. The recovery time is 90 seconds after starting Windows.

CTR 2.0 beta 1 Optimization for ZEN2+ CPUs	CCX1 31.2° CCX2 31° CCX3 32.1° C01 636 145 C04 780 134 C07 775 123 C02 646 142 C05 664 131 C08 1222 120 C03 677 138 C06 641 127 C09 1237 120	Image: CCX4 32.9° Image: CCX5 36.9° C10 1599 120 C13 1291 120 C11 1332 120 C14 1255 120 C12 1268 120 C15 1335 120	CCX6 36.9° CCX7 32.5° C16 760 171 C19 710 167 C17 1766 174 C20 700 163 C18 1270 174 C21 783 160	CCX8 32.6° C22 789 156 C23 604 152 C24 572 149				
	· · · · · · · · ·	· · · · · ·	· · · · · · ·	· · · ·				
	CPU usage (%) 2 CPU TEL (V) 1.375 CPU VID (V) 1.38	CPU TEL (A) 24.8 CPU TDC (A) 22	CPU TEL (W) 34.7 CPU PPT (W) 91.4	CPU EDC (A) 270.4				
BENCHMARK	Settings mode Advanced 🗸	RESET SETTING	s Log & System Information	8				
C ABOUT & HELP	LP Testing mode AVX Light CPU usage trigger (%) 70 AMD Ryzen Threadripper 3960X 24-Core Proce AMD Ryzen Threadripper 3960X 24-Core Proce ASUS ROG ZENITH II EXTREME							
SCREENSHOT	Cycle time (s) 360 V Reference frequency (MHz) 4200 M.	x EDC (A) 360 CCX usage max (%)	70 19:51:02: Stress test stopped. 19:51:03: Stress test #2 started 19:51:03: CPU Vdroop: 2.2 % temperature: 4/2 30 19:52:41: Stress test stopped	5.9°				
	Polling period (ms) 500 V Diagnostic voltage (mV) 1181 M	x temperature (°C) 88 Holding time (ms) —	4000 19:52:42: Stress test #3 started 19:52:47: CPU Vdroop: 2.2 % temperature: 4 19:54:20: Stress test stopped. 19:54:20: Stress test #4 started	7.3°				
- MINIMIZE	IFSO 1.0 / IFSO 2.0 Enhance accuracy	CB20 testing CTR HYBRID OC	19:54:25: CPU Vdroop: 2.2 % temperature: 4 19:55:59: Stress test stopped. Calculation of penalties for the final profile: 19:55:59: CCX1 (138): 4200 MHz, 1225 mV O	7.4° C+				
EXIT	Autoload profile with OS To tray	Autoshare stats	19:55:59: CCX2 (127): 4200 MHz, 1225 mV O 19:55:59: CCX3 (120): 4150 MHz, 1225 mV O 19:55:59: CCX4 (120): 4150 MHz, 1225 mV O	C+ C= C=				
	DIAGNOSTIC TUNE STOP	CHECK PROFILE STABILITY MANAGEMENT	U 19:55:59: CCX5 (120): 4225 MHz, 1225 mV O 19:55:59: CCX6 (171): 4225 MHz, 1225 mV O 19:55:59: CCX7 (160): 4175 MHz, 1225 mV O 19:55:59: CCX7 (160): 4175 MHz, 1225 mV O 19:55:59: CCX8 (149): 4150 MHz, 1225 mV O Cinebench 20 started	C+ C+ C= C=				
Copyright 1usmus© 2019-2021			Cinebench 20 finished with result 13730 Voltage: 1.225 V PPT: 255.2 W Temperatur	e: 60.2° 🗸 🗸				

Clock Tuner for Ryzen™ 2.0 – SAVE PROFILE

 After finishing the tuning, the user will have to save the profile. In order to transfer the data to the profile press "FILL P1 PROFILE" (this and other profiles management buttons are in "PROFILE MANAGEMENT"). Then you can save the profile or activate (apply) it without saving. Be careful, if you close the program without saving your profile, you will lose it. I also want to point out that all the basic CTR settings will be saved when you click "EXIT" button.

Clock Tuner for Ryzen™ 2.0 – HYBRID OC

- 1. "HYBRID OC" mode requires only 1 (minimum) profile P1 or P2. To activate HYBRID OC mode you must have a saved profile (P1 or P2), activate "Autoload profile with OS" and "CTR HYBRID OC".
- 2. Go to the "**PROFILE MANAGEMENT**" tab and activate one of the saved profiles. If you have both profiles (**P1** and **P2**) filled (and saved) "**HYBRID OC**" will automatically use 2 profiles and default boost.

CTR 2.0 beta 1 Optimization for ZEN2+ CPUs	CCX1 30.2° CCX2 30.1° CCX3 30.8° CCX4 31° CCX5 35.7° CCX6 36.9° CCX7 31.5° CC	(8 31.6°								
	CO2 588 142 CO5 596 131 CO8 1175 120 C11 1353 120 C14 1142 120 C17 996 174 C20 614 163 C23 596	4 152								
~	C03 616 138 C06 589 127 C09 1054 120 C12 1105 120 C15 1028 120 C18 1741 174 C21 754 160 C24 59	8 149								
НОМЕРАДЕ										
(7) TUNER	CPU usage (%) 1.3 CPU TEL (V) 1.366 CPU VID (V) 1.371 CPU TEL (A) 23.9 CPU TDC (A) 20.2 CPU TEL (W) 33.4 CPU PPT (W) 88.4 CPU EDC (A)	265.9								
BENCHMARK	Settings mode Advanced V RESET SETTINGS Log & System Information	(
C ABOUT & HELP	Testing mode AVX Light V Reference voltage (mV) 1225 Max PPT (W) 340 CPU usage trigger (%) 70 AMD Ryzen Threadripper 3960X 24-Core Processor ASUS ROG ZENITH I EXTREME									
SCREENSHOT	Cycle time (s) 360 V Reference frequency (MHz) 4200 Max EDC (A) 360 CCX usage max (%) 70 19:52:41: Stress test stopped. 19:52:42: Stress test #3 started	^								
<u> </u>	CCX delta (MHz) 75 V Max frequency (MHz) 4675 Max TDC (A) 250 CCX usage min (%) 30 19:54:20: Stress test stopped. 19:54:20: Stress test stopped. 19:54:20: Stress test stopped. 19:54:20: Stress test #4 started									
	Polling period (ms) 500 V Diagnostic voltage (mV) 1181 Max temperature (°C) 88 Holding time (ms) 4000 19:54:25: CPU Vdroop: 2.2 % temperature: 47.4 ° 19:55:59: Stress test stopped. Calculation of penalties for the final profile:									
MINIMIZE	IP:55:59: CCX1 (138): 4200 MHz, 1225 mV OC+ 19:55:59: CCX2 (127): 4200 MHz, 1225 mV OC+ 19:55:59: CCX2 (127): 4200 MHz, 1225 mV OC+ 19:55:59: CCX3 (120): 4150 MHz, 1225 mV OC= 19:55:59: CCX4 (120): 4150 MHz, 1225 mV OC=									
EXIT	Autoload profile with OS To tray Autoshare stats To tray Autoshare stats 19:55:59: CCX5 (120): 4225 MHz, 1225 mV OC+ 19:55:59: CCX6 (171): 4225 MHz, 1225 mV OC+ 19:55: <u>59: CCX7 (160): 4175 MHz, 1225 mV OC=</u>									
	DIAGNOSTIC TUNE STOP CHECK STABILITY PROFILE MANAGEMENT Dispersion 19:55:59: CCX8 (149): 4150 MHz, 1225 mV OC= Cinebench 20 started Cinebench 20 started Cinebenc									
Copyright 1 usmus © 2019-2021	Profile P1 successfully applied! Hybrid boost enabled	~								

Clock Tuner for Ryzen[™] 2.0 – HYBRID OC

- If **CPU usage** exceeds **70%**, **P1** profile will be activated. If the load is less than 70% profile **P2** will be active (in case it was saved beforehand). If only **P1** profile is present in CTR, below 70% the standard boost will be activated.
- P2 profile is controlled by the range "CCX usage max (%) CCX usage min (%)".
- The user can use individual settings.

	CTR 2.0 beta 1 ptimization for ZEN2+ CPUs		CCX1	28.8°	∰ .04	CCX2	28.6°	₽ C 07	CCX3 938	30.4°	C10	CCX4	29.8°	C13	CCX5	34.2°	C16	CCX6	34.3°	C19	CCX7	30.4° 167	C22	CCX8	30.3°
		C02	679	142	C05	684	131	C08	1736	120	C11	1322	120	C14	1429	120	C17	1744	174	C20	728	163	C23	733	152
•		C03	690	138	C06	684] 127	C09	1396	120	C12	1355	120	C15	1344	120	C18	1215	174	C21	995	160	C24	745	149
ඛ	HOMEPAGE																								
(7)	TUNER	CPU u	sage (%)	1.2	CPU TI	EL (V)	1.387	CPU VI	ID (V)	1.393	CPU TI	EL (A)	25.7	СРИ Т	DC (A)	21.9	CPU T	EL (W)	36.2	CPU P	PT (W)	90.8	CPU EI	DC (A)	276.1
	BENCHMARK	Setti	ngs moo	de Adv	anced 🔨	 	_	_	_	_	_	_	_	_	RESI	ET SETTING	s	Log 8	k Syster	n Infor	mation	_	_	_	1
©	ABOUT & HELP	Testing) mode	AVX Light	± ~	Refere	ence voltag	ge (mV)	1225	Ma	ax PPT (W))	340	сри	usage trig	ger (%) 70 AMD Ryzen Threadripper 3960X 24-Core Processor ASUS ROG ZENITH II EXTREME									
<u>6</u>	SCREENSHOT	Cycle ti	ime (s)	360	~	Refere	nce frequ	iency (MH	łz) 4200	— Ма	ax EDC (A))	360	ссх	usage ma	x (%) -	70	19:52: 19:52:	41: Stress 42: Stress	test stop test #3 st	ped. tarted		7.20		^
0		CCX de	elta (MHz)	75	\sim	Max fr	equency ((MHz)	4675	— Ма	ax TDC (A))	250	ссх	usage min	ı (%) -	30	19:54: 19:54: 19:54:	20: Stress 20: Stress 20: Stress	test stop test #4 s	ped. tarted	raure. 47	/.3		
Ŵ	DONATE	Polling	period (m	ns) 500	~	Diagno	ostic volta	ige (mV)	1181	- Ma	ax temper	ature (°C)	88	Hold	ing time (r	ns) -	4000	19:54: 19:55: Calcu	25: CPU V 59: Stress lation of p	/droop: 2 test stop enalties f	.2 % tempe ped. for the final	erature: 47 profile:	7.4°		
	MINIMIZE	IFSO 1.	0 / IFSO 2.	.0			Enhance	accuracy			CB20 test	ting		CTR	HYBRID O	c (19:55: 19:55: 19:55: 19:55:	59: CCX1 59: CCX2 59: CCX3 59: CCX3	(138): 420 (127): 420 (120): 415 (120): 415	0 MHz, 12 0 MHz, 12 0 MHz, 12 0 MHz, 12	25 mV 00 25 mV 00 25 mV 00 25 mV 00	C+ C+ C= C=		
\approx	EXIT	Autolo	ad profile	with OS			To tray				Autoshar	e stats						19:55: 19:55: 19:55:	59: CCX5 59: CCX6 59: CCX7	(120): 422 (171): 422 (160): 417	25 MHz, 122 25 MHz, 122 25 MHz, 122	25 mV 00 25 mV 00 25 mV 00	C+ C+ C=		
	DIAGNOSTIC TUNE STOP CHECK STABILITY PROFILE MANAGEMENT Image: Display and the sum of the sum																								
Copyrig	ght 1usmus© 2019-2021																	Profile Hybrid	P1 succe boost er	essfully a nabled	pplied!				~

Clock Tuner for Ryzen[™] 2.0 – HYBRID OC

- "Holding time (ms)" is the time for keeping one of the profiles active. If CPU usage is less than 70% for 4 seconds (4000 ms) - profile P1 will be deactivated.
- Profile **P1** always has priority, it is able to interrupt the "hold" caused by profile **P2**.
- If the processor temperature exceeds the "Max temperature" value, both profiles will be deactivated.

CTR 2.0 beta 1 Optimization for ZEN2+ CPUs	CCX1 30.3° CCX2 30.3° CCX3 31.5° CCX4 31.8° CCX5 36.4°	CCX6 37.2° CCX7 31.7°	CCX8 31.8°					
	C02 658 142 C05 641 131 C08 1199 120 C11 1394 120 C14 1252 120 C17	1001 174 C20 720 163	C23 700 152					
П НОМЕРАДЕ	C03 660 138 C06 630 127 C09 1324 120 C12 1225 120 C15 1257 120 C18 -	1943 174 C21 852 160 - - - - - -	C24 700 149 					
C TUNER	CPU usage (%) 1.9 CPU TEL (V) 1.376 CPU VID (V) 1.381 CPU TEL (A) 25.3 CPU TDC (A) 21.6 CPU TEL	EL (W) 35.4 CPU PPT (W) 90.7	CPU EDC (A) 270.6					
BENCHMARK	Settings mode Advanced V	Log & System Information	9					
C ABOUT & HELP	Testing mode AVX Light V Reference voltage (mV) 1225 Max PPT (W) 340 CPU usage trigger (%) 70	AMD Ryzen Threadripper 3960X 24-Core Processor ASUS ROG ZENITH II EXTREME						
SCREENSHOT	Cycle time (s) 360 V Reference frequency (MHz) 4200 Max EDC (A) 360 CCX usage max (%) 70	19:52:41: Stress test stopped. 19:52:42: Stress test #3 started 19:52:47: CPU Vdroop: 2.2 % temperature: 47.3*						
DONATE	CCX delta (MHz) 75 Max frequency (MHz) 4675 Max TDC (A) 250 CCX usage min (%) 30 Polling period (ms) 500 Diagnostic voltage (mV) 1181 Max temperature (°C) 88 Holding time (ms) 4000	19:54:20: Stress test stopped. 19:54:20: Stress test #4 started 19:54:25: CPU Vdroop: 2.2 % temperature: 47.4* 19:55:59: Stress test stopped.						
MINIMIZE	IFSO 1.0 / IFSO 2.0 Enhance accuracy CB20 testing CTR HYBRID OC	19:55:59: CCX1 (138): 4200 MHz, 1225 mV O 19:55:59: CCX2 (127): 4200 MHz, 1225 mV O 19:55:59: CCX2 (127): 4200 MHz, 1225 mV O 19:55:59: CCX3 (120): 4150 MHz, 1225 mV O 19:55:59: CCX4 (120): 4150 MHz, 1225 mV O	C+ C+ C= C=					
EXIT	Autoload profile with OS To tray Autoshare stats	19:55:59: CCX5 (120): 4225 MHz, 1225 mV O 19:55:59: CCX6 (171): 4225 MHz, 1225 mV O 19:55:59: CCX7 (160): 4175 MHz, 1225 mV O	C+ C+ C=					
	DIAGNOSTIC TUNE STOP CHECK PROFILE STABILITY MANAGEMENT	Cinebench 20 started Cinebench 20 started Cinebench 20 finished with result 13730 Voltage: 1.225 V PPT: 255.2 W Temperatur Profile P1 successfully filled!	,= e: 60.2°					
Copyright 1usmus⊜ 2019-2021		Profile P1 successfully applied! Hybrid boost enabled						

Clock Tuner for Ryzen™ 2.0 – P2 PROFILE

- 1. To create a **P2** profile, you will need to manually fill in the "**Reference voltage**" and "**Reference frequency**" data that can be found after diagnostics.
- 2. Run "**TUNE**" again. When the tuning process is finished, save the new profile in slot **P2**.

CTR 2.0 beta 1 Optimization for ZEN2+ CPUs	Image: CCX1 31.9° Image: CCX2 30.8° Image: CCX3 31.7° Image: CCX4 31.5° Image: CCX5 36.3° Image: CCX6 36.3° Image: CCX7 32.3° Image: CCX8 32.3° C01 1594 145 C04 640 134 C07 875 123 C10 1123 120 C13 1155 120 C16 833 171 C19 731 167 C22 905 155	2.3°
	C02 678 142 C05 653 131 C08 1541 120 C11 1315 120 C14 1416 120 C17 1825 174 C20 725 163 C23 711 155	52
Ш НОМЕРАGE	C03 683 138 C06 648 127 C09 1150 120 C12 1194 120 C15 1266 120 C18 1209 174 C21 905 160 C24 711 14 -	19
C TUNER	CPU usage (%) 2 CPU TEL (V) 1.386 CPU VID (V) 1.392 CPU TEL (A) 26.3 CPU TDC (A) 22.3 CPU TEL (W) 36.9 CPU PPT (W) 91.5 CPU EDC (A) 273.	8
BENCHMARK	Settings mode Advanced V RESET SETTINGS Log & System Information	
C ABOUT & HELP	Testing mode AVX Light Reference voltage (mV) 1225 Max PPT (W) 340 CPU usage trigger (%) 70 AMD Ryzen Threadripper 3960X 24-Core Processor ASUS ROG ZENITH II EXTREME	
SCREENSHOT	Cycle time (s) 360 V Reference frequency (MHz) 4200 Max EDC (A) 360 CCX usage max (%) 70 21:40:24: Stress test 2 started 21:41:00: Stress test 2 started 21:41:01: Stress test 2 started	^
<u> </u>	CCX delta (MHz) 75 V Max frequency (MHz) 4675 Max TDC (A) 250 CCX usage min (%) 30 21:41:01: Step# 4. Diagnostic VID: 1126 mV 21:41:41:01: Step# 4. Diagnostic VID: 1126 mV 21:41:41:41:41:41:41:41:41:41:41:41:41:41	
	Polling period (ms) 500 V Diagnostic voltage (mV) 1144 Max temperature (°C) 88 Holding time (ms) 4000 21:41:25: Stress test stopped. 21:41:26: Step# 5. Diagnostic VID: 1132 mV	
- MINIMIZE	IFSO 1.0 / IFSO 2.0 Enhance accuracy CB20 testing CTR HYBRID OC CTR HYBRID OC AMD Ryzen Threadripper 3960X 24-Core Processor	
EXIT	Autoload profile with OS To tray Autoshare stats Autoshare stats Your CPU is SILVER SAMPLE Recomended values for Overclocking (P1 profile): Reference frequency: 4200 MHz	
	DIAGNOSTIC TUNE STOP CHECK STABILITY PROFILE MANAGEMENT Diagonal Diagonal Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Diagonal Image: Dia	
Copyright 1usmus© 2019-2021	Reference frequency: 4050 MHz Reference voltage: 1150 mV	-

Clock Tuner for Ryzen[™] 2.0 – CONFIG FILE

• If you can't start the application or some functions don't work, delete the configuration files.

📊 🛛 🛃 🤿 🗢 🛛 Local						
File Henre Share		VICW				
$\leftarrow \rightarrow \checkmark \land \blacksquare \rightarrow$ Thi	is PC	> Local Disk (C:) > Users > 1us	mus > AppData > Local			
		^ 20201 DISK (CI) / 05215 / 105				
	ING	ame	Date modified	Туре	Size	
Quick access		IdentityService	10/17/2020 6:27 PM	File folder		
📃 Desktop 🛛 🖈		1usmus	8/30/2020 9:50 PM	File folder		
👆 Downloads 🛛 🖈		A	10/17/2020 12:49 AM	File folder		
🔮 Documents 🛛 🖈		AcSdkInsLog	9/21/2020 12:31 PM	File folder		
📰 Pictures 🛛 🖈		Adobe	8/21/2020 1:38 PM	File folder		
09.10.2020 гот		AMD	8/17/2020 11:18 AM	File folder		
CTR11		ArmouryLiveUpdate	9/21/2020 12:32 PM	File folder		
Release		Ashampoo	8/17/2020 11:42 AM	File folder		
- Keicase		ASUS	8/17/2020 11:04 AM	File folder		
Оан		BitTorrentHelper	8/20/2020 11:06 PM	File folder		
len OneDrive		cache	8/17/2020 11:02 AM	File folder		
This DC		Capture_One	8/17/2020 11:28 AM	File folder		
		CaptureOne	10/10/2020 6:28 PM	File folder		
3D Objects		CEF	8/21/2020 1:35 PM	File folder		
E Desktop		Comms	8/17/2020 11:00 AM	File folder		
🔮 Documents		ConnectedDevicesPlatform	8/17/2020 10:48 AM	File folder		
👆 Downloads		D3DSCache	8/21/2020 1:36 PM	File folder		
Music		Discord	10/2/2020 9:18 AM	File folder		
Pictures		Downloaded Installations	8/17/2020 12:08 PM	File folder		
Videos		DxO	8/23/2020 1:56 PM	File folder		
Local Disk (C)		GitHubVisualStudio	10/5/2020 5:14 PM	File folder		
Local Disk (C:)		Google	9/4/2020 5:14 PM	File folder		
Local Disk (D:)		HQTswskRka2416pPaC	10/15/2020 6:33 PM	File folder		
USB Drive (E:)		IsolatedStorage	8/17/2020 11:46 AM	File folder		
🥒 CD Drive (F:) MB Su		JetBrains	10/15/2020 6:30 PM	File folder		
CD Drive (F:) MR Sup		Just Color Picker	8/24/2020 12:04 AM	File folder		
a co onice (n) mo sup		Microsoft	8/27/2020 8:47 AM	File folder		
SB Drive (E:)		MicrosoftEdge	9/2/2020 8:18 PM	File folder		
CB20		Nemesis_Ulv2	10/17/2020 12:27 AM	File folder		<<< DELETE

- Some versions of operating systems Windows 10 have incompatible or corrupted autorun functions. If the application doesn't start it means that Windows for some reason can't or doesn't want to run CTR.
- You can check the status of the autorun in the "Task Scheduler".

🕑 Task Scheduler								- 🗆 X
<u>F</u> ile <u>A</u> ction <u>V</u> iew <u>H</u> elp								
🔶 🌩 🙍 🖬 🚺 🖬								
File Action Yiew Help 	Name AAct AMDAutoUp AMDInstallLa AMDInstallLa AMDInstallLa AMDInstallLa AMDInstallLa AMDInkUp DisplayCAL Pa. CogleUpda GoogleUpda GoogleUpda MicrosoftEd MicrosoftEd MicrosoftEd ModifyLinkU NahimicSvc3 NahimicSvc4 Cogeneral Triggers When you creat Trigger At log on	Status Ready Disabled Ready Ready Ready Disabled Disabled Ready Ready Ready Ready Ready Ready Ready Ready Ready Ready Ready Ready Ready Ready Ready Disabled Ready Disabled Ready Ready Disabled Ready Ready Ready Ready Disabled Ready Ready Disabled Ready Ready Ready Disabled Ready Re	Triggers At 800 PM every 10 days - After triggered, repeat every 10.00:00:00 indefinitely. At 12:00 AM every 15 days At 10g on of any user Multiple triggers defined At 3:43 PM every day Multiple triggers defined At 3:43 PM every day - After triggered, repeat every 1 hour for a duration of 1 day. Multiple triggers defined At 11:43 PM every day - After triggered, repeat every 1 hour for a duration of 1 day. At log on of any user Conditions Settings History (disabled) ou can specify the conditions that will trigger the task. To change these triggers, oper etails Status icg on of any user Enabled	Next Run Time 1/1/2021 8:00:22 PM 1/9/2021 12:00:00 AM 12/29/2020 3:43:34 PM 12/28/2020 10:43:34 PM 12/28/2020 10:43:34 PM 12/28/2020 10:43:49 PM 12/28/2020 10:43:49 PM	Last Run Time 12/22/2020 8:00:22 PM 12/10/2020 12:14:35 PM 11/30/1999 12:00:00 AM 11/30/1999 12:00:00 AM 12/29/2020 19:07:29 PM 12/28/2020 8:12:44 AM 12/21/2020 6:10:04 PM 12/21/2020 6:10:04 PM 12/28/2020 10:07:28 PM 12/28/2020 10:07:28 PM 12/28/2020 10:07:28 PM 11/30/1999 12:00:00 AM 11/30/1999 12:00:00 AM 12/08/2020 10:07:35 PM 12/09 10:07:35 PM	Last Run Result The operation completed successfully. (0x0) The operator or administrator has refused the request. (C The task has not yet run. (0x41303) The task has not yet run. (0x41303) The operation completed successfully. (0x0) The task has not yet run. (0x41303) The task has not yet run. (0x41304) The task has not yet run. (0x413	×	Actions Task Scheduler Library Import Task Import Task Import Task Display All Running Tasks Enable All Tasks History New Folder View Refresh End End Disable Export Properties Properties Help
							¥	
	p .							

Clock Tuner for Ryzen™ 2.0 – SMU PROBLEMS

• Missing frequency and temperature - incompatible BIOS. There are many reasons, up to the motherboard manufacturer's error. The solution is to install another version of the BIOS. The problem may also be due to running third-party monitoring software.

• **CMD_REJECTED_PREREQUISITE** or **FAILED** - incompatible BIOS. There are many reasons, up to the motherboard manufacturer's error. The solution is to install another version of the BIOS. The problem may also be due to running third-party monitoring software.

Manual overclocking mode enabled CMD_REJECTED_PREREQUISITE 93 18:05:40: CCX1 (127): 4400 MHz, 1175 mV 18:05:40: Step# 1. Diagnostic VID: 1175 mV